Transferring Data in SQL Server with an Eye on Performance

A lot of database professionals often need to archive older data in SQL Server by transferring it from one table to another. There are multiple ways to achieve the transfer, the most useful of which we will discuss in this blog. We will also provide tips to ensure the performance of the database doesn’t get affected as these approaches are carried out.

Different Methods to Move Data from One Table to Another

Consider the following techniques that various DBAs take when they have to take data from a table to add to another table along with some ways to improve performance of SQL query while using them:

  1. Insert data with the INSERT INTO command – The INSERT INTO query is one of the basic methods of moving data from table 1 to table 2. You can help decrease the time it takes to enter information using this method. If the database is running under the full recovery model, just change it to the bulk-logged model. Doing this saves execution time as it skips over complete logging of bulk operations. The following query should help with this:

ALTER DATABASE <database name> SET RECOVERY <BULK_LOGGED>

Once you switch to the bulk-logged recovery model, you will have to use a truncate statement to flush table 2 (destination). You can carry out the same script you were using to transfer data after this.

  1. Use the SELECT INTO query – Using the SELECT INTO rather than the INSERT INTO command can prove useful in some cases. However, the benefits are significant when the recovery model is bulk-logged due to the reason mentioned above. Although users lack the ability to place the data in an existing table, SQL Server brought with it a feature to make things easier. It essentially enables them to pick the filegroup where they want to create a table.
  1. INSERT INTO query + Tab lock hint – Using both in combination has been known to provide better database performance. To achieve this, you will have to use TABLOCK for table 2. If the destination table is without a clustered index or other constraints, that data will remain as a heap. It helps to use the TABLOCK hint for the destination table during data insertion into a heap using the INSERT INTO statement. Doing this enhances query logging and locking since a shared lock is placed on the whole table rather than every row or page.
  2. Adding data using the SWITCH TO query – You can also try moving the data with the help of the SWITCH TO command. Although this query typically finds its use while transferring information between partitions among separate tables, it can help here as well. How? By moving data from one partition to the next using the ALTER TABLE command. If there are no allocated partitions, the data will transfer through tables instead. Before you begin data insertion, make sure you disable any constraints or indexes that exist on the table. It is better to enable constraints and rebuild indexes after insertion from a performance perspective.

Tips for Enhancing Performance During Data Transfer and Insertion

  • Reduce IO lag – Latency can negatively impact the process of writing database files on disk. You can decrease latency and bottlenecks using SSD drives that are comparatively better than SATA or SCSI drives.
  • Maintain Robust Server Infrastructure – The system needs to be properly built to ensure competent performance for various database operations. The greater the pressure on the resources, the greater the effect on performance.
  • Follow ACID Properties – ACID properties make sure each transaction contains certain properties when it gets processed. In the case of data insertion, the isolation factor is also important to consider because the values have another source. Here, the statements should contain the suitable isolation level to maintain integrity within the database.
  • Database Settings – One of the best ways to achieve improved outcomes is to maintain the right database configuration. This is because the settings can have a significant effect on performance. For instance, the location of the database files on the disk along with TempDB settings.

These are the various ways in which you can gain better performance at the query, trace, and constraint levels along with additions that can improve the execution of insert operations.