How to Tune SQL Statement with CASE Expression for SQL Server II?

oracle database performance tuning

We have discussed how to tune a CASE expression SQL with hardcoded literals in my last blog:

How to Tune SQL Statement with CASE Expression for SQL Server I?

SELECT *
FROM EMPLOYEE
 WHERE
 CASE
  when emp_id  < 1001000 then ‘Old Employee’ 
  when emp_dept <‘B’     then ‘Old Department’
 ELSE  ‘Normal’
 END =  ‘old Employee’

If I change the hardcoded literal to a @var, what will be the performance of the last blog’s rewritten SQL?

SELECT *
FROM EMPLOYEE
 WHERE
 CASE
  when emp_id  < 1001000 then ‘Old Employee’ 
  when emp_dept <‘B’     then ‘Old Department’
 ELSE  ‘Normal’
 END =  @var

I use the same method in my last blog to rewrite this SQL into the following multiple OR syntax, but the SQL Server optimizer change back to a full table scan of the EMPLOYEE table. It is because the SQL Server cannot do a good cardinality estimation of the variable of @var.

select *
from  EMPLOYEE
where emp_id < 1005000
     and ‘Old Employee’ = @var
     or not ( emp_id < 1005000 )
     and emp_dept < ‘B’
     and ‘Old Department’ = @var
     or not ( emp_id < 1005000 )
     and not ( emp_dept < ‘B’ )
     and ‘Normal’ = @var

We can rewrite the CASE expression into the following syntax with multiple UNION ALL statements, this syntax is more complicated than the rewrite with multiple OR conditions in my last blog. But it can make SQL Server improve the query plan to be more efficient.

select *
from  EMPLOYEE
where emp_id < (select 1005000)
     and ‘Old Employee’ = @var
union all
select *
from  EMPLOYEE
where ( not ( emp_id < 1005000 )
       and ‘Old Employee’ = @var
     or @var is null )
     and emp_id >= 1005000
     and emp_dept < ‘B’
     and ‘Old Department’ = @var
union all
select *
from  EMPLOYEE
where ( not ( emp_id < 1005000 )
       and ‘Old Employee’ = @var
     or @var is null )
     and ( not ( emp_id >= 1005000
         and emp_dept < ‘B’
         and ‘Old Department’ = @var )
       or @var is null )
     and emp_id >= 1005000
     and emp_dept >= ‘B’
     and ‘Normal’ = @var

Here is the query plan of the rewritten SQL and the speed is 0.448 seconds. It is 5 times better than the original syntax. People may think that there are two table scan operations of EMPLOYEE that will slow down the whole process, but actually, the corresponding filter operations will stop the table scan operations immediately due to the filter conditions ‘Normal’ = @var and ‘Old Department’ = @var will not be satisfied. This kind of query plan cannot be generated by SQL Server’s internal SQL optimizer, it means that you cannot use Hints injection to get this query plan.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for SQL Server automatically.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

How to Tune SQL Statement with CASE Expression for SQL Server I?

oracle database performance tuning

Here the following is a simple SQL statement with a CASE expression syntax.

SELECT *
FROM EMPLOYEE
WHERE
CASE
when emp_id  < 1001000 then ‘Old Employee’
when emp_dept <‘B’     then ‘Old Department’
ELSE  ‘Normal’
END =  ‘old Employee’

Here the following are the query plans of this SQL, it takes 2.23 seconds in a cold cache situation, which means data will be cached during the SQL is executing. The query shows a Full Table Scan of the EMPLOYEE table due to the CASE expression cannot utilize the emp_id index or emp_dept index.

We can rewrite the CASE expression into the following syntax with multiple OR conditions.

select *
from  EMPLOYEE
where emp_id < 1005000
and ‘Old Employee’ = ‘Old Employee’
or not ( emp_id < 1005000 )
and emp_dept < ‘B’
and ‘Old Department’ = ‘Old Employee’
or not ( emp_id < 1005000 )
and not ( emp_dept < ‘B’ )
and ‘Normal’ = ‘Old Employee’

Here is the query plan of the rewritten SQL and the speed is 0.086 seconds. It is 25 times better than the original syntax. The new query plan shows an Index Seek of EMP_ID index.

This SQL rewrite is useful when the CASE expression is equal to a hardcoded literal, but if the literal “  =’Old Employee’ ” replaced by a variable “ = :var ”, this rewrite may not be useful, I will discuss it in my next blog.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for SQL Server automatically.

Expert (TSES™) for SQL Server® – Tosska Technologies Limited

How to Tune SQL Statement with CASE Expression for SQL Server I?

sql performance monitoring

Here the following is a simple SQL statement with a CASE expression syntax.

SELECT *
FROM EMPLOYEE
WHERE
CASE
when  emp_id   < 1001000 then ‘Old Employee’
when  emp_dept <‘B’   then ‘Old Department’
ELSE‘Normal’
END = ‘old Employee’

Here the following are the query plans of this SQL, it takes 2.23 seconds in a cold cache situation, which means data will be cached during the SQL is executing. The query shows a Full Table Scan of the EMPLOYEE table due to the CASE expression cannot utilize the emp_id index or emp_dept index.

We can rewrite the CASE expression into the following syntax with multiple OR conditions.

select *
from  EMPLOYEE
where  emp_id < 1005000
and ‘Old Employee’ = ‘Old Employee’
or not  ( emp_id < 1005000 )
and emp_dept < ‘B’
and‘Old Department’ = ‘Old Employee’
or not  ( emp_id < 1005000 )
and not ( emp_dept < ‘B’ )
and‘Normal’ = ‘Old Employee’

Here is the query plan of the rewritten SQL and the speed is 0.086 seconds. It is 25 times better than the original syntax. The new query plan shows an Index Seek of EMP_ID index.

This SQL rewrite is useful when the CASE expression is equal to a hardcoded literal, but if the literal “  =’Old Employee’ ” replaced by a variable “ = :var ”, this rewrite may not be useful, I will discuss it in my next blog.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for SQL Server automatically.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

How to Tune SQL Statement with OR conditions in a Subquery for SQL Server?

sql performance monitoring

The following is an example that shows a SQL statement with an EXISTS subquery. The SQL counts the records from the EMPLOYEE table if the OR conditions are satisfied in the subquery of the DEPARTMENT table.

select countn(*) from employee a where
exists (select ‘x’ from department b
    where a.emp_id=b.dpt_manager or a.emp_salary=b.dpt_avg_salary
     )

Here the following is the query plan in the Tosska proprietary tree format, it takes 4 minutes and 29 seconds to finish.

The query plan shows a Nested Loops from EMPLOYEE to full table scan DEPARTMENT, it is the main problem of the entire query plan, the reason is the SQL Server cannot resolve this OR conditions  ”a.emp_id=b.dpt_manager or a.emp_salary=b.dpt_avg_salary” by other join operations.

Let me rewrite the OR conditions in the subquery into a UNION ALL subquery in the following, the first part of the UNION ALL in the subquery represents the “a.emp_id=b.dpt_manager” condition, the second part represents the “a.emp_salary=b.dpt_avg_salary” condition but exclude the data that already satisfied with the first condition.

select  count(*)
from   employee a
where  exists ( select  ‘x’
        from   department b
        where  a.emp_id = b.dpt_manager
        union all
        select  ‘x’
        from   department b
        where  ( not ( a.emp_id = b.dpt_manager )
            or b.dpt_manager is null )
            and a.emp_salary = b.dpt_avg_salary )

Here the following is the query plan of the rewritten SQL, it looks a little bit complex, but the performance is very good now, it takes only 0.447 seconds. There are two Hash Match joins that are used to replace the original Nested Loops from EMPLOYEE to full table scan DEPARTMENT.

Although the steps to the final rewrite is a little bit complicated, this kind of rewrites can be achieved by Tosska SQL Tuning Expert for SQL Server automatically, it shows that the rewrite is more than 600 times fastAlthough the steps to the final rewrite is a little bit complicated, this kind of rewrites can be achieved by Tosska SQL Tuning Expert for SQL Server automatically, it shows that the rewrite is more than 600 times faster than the original SQL.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

Tosska SQL Tuning Expert (TSES™) for SQL Server® – System Requirements

Before installing Tosska SQL Tuning Expert (TSES™) for SQL Server®, please make sure your system meets the following minimum hardware and software requirements:
 

CPU 1.8 GHz Processor
Memory 2 GB of RAM minimum, 4 GB of RAM recommended
Hard Disk Space 500 MB of disk space for 64-bit installation
Operating System Microsoft Windows® 7 64-bit
Microsoft Windows® 10 64-bit
.NET Framework Microsoft .NET Framework 4.5.0
Database Server SQL Server database 2005 or higher

How to Tune Bad Performance SET ROWCOUNT SQL Statements for SQL Server?

sql performance monitoring

Some SQL statements will be running very slow after SET ROWCOUNT or TOP is used.  SET ROWCOUNT and TOP are used to tell SQL Server to select a specific number of rows from the SQL statements instead of extracting all records. Not many people know that SQL Server will try to re-optimize your SQL statements after you adding SET ROWCOUNT or TOP, the result is normally good after re-optimization of your SQL statements that can generate query plans for retrieving the first few records as fast as possible.

Good Example for Query Re-optimization for SET ROWCOUNT

Here the following is an example that shows the SQL takes 6.78 seconds to retrieve 217500 rows from the database, the query plan shows a good plan with a Hash Match for two Table Scan of [DEPARTMENT] and [EMPLOYEE].

The following screen shows the new query plan is generated after the SET ROWCOUNT 1 is used, the query plan is changed from Hash Match to Nested Loops. Nested Loops operation normally provides faster first few records retrieval time but may not be good for overall records extraction in certain situations. It is good to see that SQL Server uses only 0.013 seconds to extract the first row for this SQL.

Bad Example for Query Re-optimization for SET ROWCOUNT

Let’s see a bad example that shows how SQL Server degrades a good query plan to a bad query plan after the SET ROWCOUNT 1 is used. Here the following is an example that shows the SQL takes 0.118 seconds to retrieve 1613 rows from the database, the query plan is a little bit complex but it is a good query plan to retrieve all 1613 rows.

The following screen shows the new query plan is generated after the SET ROWCOUNT 1 is used, the query plan is now changed to Nested Loops with two Table Scans. The new query plan takes 1.312 seconds to extract only the first record, it is even slower than the 0.118 seconds that is used to extract all 1613 rows from the database.

How to Solve This Problem?

We can use Hints injection or SQL syntax rewrite to influence SQL Server to get back the original plan or generate an even better query plan for the SET ROWCOUNT or TOP operation. The following Hints injection generated a good query plan that is almost 90 times better than the original SQL with SET ROWCOUNT 1.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

How to Tune Cold Cache SQL Statements for SQL Server?

sql optimizer for sql server

For SQL statements that are not executed frequently, so that the relevant data is no longer exists in the buffer cache, a cold cache will significantly affect the performance of a SQL statement. A good performance SQL for hot cache may not be performing well in a cold cache environment. Experience developers will tune their SQL running well for both environments.

Here the following is an example SQL:

select * from
EMPLOYEE A
 where  A.EMP_ID IN (SELECT B.EMP_ID from EMP_SUBSIDIARY B
                      where B.EMP_DEPT < ‘D’)

Here the following is the query plan in the Tosska proprietary tree format, it takes 8.024 seconds for the first execution with cache delay and it takes 3.7 seconds for the second execution without caching time.

According to the query plan, you may find that the most significant IO consumption is the Table Scan of [EMPLOYEE] table. To simulate the cold cache environment, we can use the DBCC DROPCLEANBUFFERS command to clear the data cache before each execution of rewritten or optimized SQL statement.

Let me add an optimizer hint OPTION(LOOP JOIN) to the SQL and try to change the query plan from a Hash Match to a Nested Loop join. So, the EMP_ID(EMPLOYEE_PK) and a RID Lookup to [EMPLOYEE] will be used instead of using Table Scan. I hope that the RID Lookup can select fewer data from hard disk with matched EMP_ID in both [EMPLOYEE] and [EMP_SUBSIDIARY].

select *
from  EMPLOYEE A
where A.EMP_ID in (select B.EMP_ID
          from   EMP_SUBSIDIARY B
          where   B.EMP_DEPT < ‘D’) OPTION(LOOP JOIN)

Here the following is the query plan, the time is reduced from 8.024 seconds to 1.565 seconds with data cache overhead, and the physical reads are also dropped from 190,621 to 39,044. It shows a wrong IO estimation If you just rely on the SQL Server’s EstimateIO x EstimiateExecutions in the query plan.

There are other even better tuning solutions for this SQL with the A.I. SQL tuning tool in the following:

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

The following SQL with an optimizer hint generate a more complicated query plan with the best execution time of 0.7 seconds. The SQL is tuned by cold cache simulation that data will be flushed before each execution of SQL alternatives.

How to Tune SQL Statement with EXISTS Subquery for SQL Server II ?

Optimization in SQL

In my last article that a SQL statement with an Exists subquery was improved 90 times by the following rewrite.

SELECT *
FROM DEPARTMENT
where exists (select ‘x’
         from employee
         where emp_id > 2700000
         and emp_dept=DPT_ID)

Query Plan:

Rewritten SQL syntax:

select  *
from DEPARTMENT
where  DPT_ID in (select    isnull(emp_dept,emp_dept)
         from      employee
         where   emp_id > 2700000
         group by emp_dept)

Query Plan:

Syntax Rewrite Solution
Syntax rewrite technique to improve SQL statements are commonly used by DBA or developers especially for Oracle or MySQL databases, but syntax rewrite is not easy to be applied by users who are using MS SQL Server or IBM Db2 LUW. The reason is that MS SQL Server and IBM Db2 LUW have a strong internal rewrite engine in their SQL optimizer. The internal SQL rewrite engine will try to rewrite a SQL syntax to their internal canonical syntax. It means that no matter how you rewrite your SQL statement, MS SQL Server and IBM Db2 LUW will try to rewrite the SQL back to their internal presumed good syntax, so it is difficult to tune a SQL if the so-called presumed good syntax is not good, since users are not easy to influence database SQL optimizer to generate a better query plan by simple SQL syntax rewrite.

Query Hints Injection Solution
To solve this problem, SQL Server provides Query Hints feature for users to help its SQL optimizer generate a better query plan. It is not like the SQL syntax rewrite method, experienced developers may tell what the final query plan will be for a rewritten syntax, Query Hints is a pinpoint solution that a query hint injection is normally applied to the specific step of the entire query plan, but a change to a plan step will incur domino effect to other plan steps in the entire query plan since MS SQL Server must adjust other plan steps to achieve what the user’s expectation for the query hint in the SQL statement. So, the final query plan is not easy to predict by users, especially for complex SQL statements.

The following SQL with Hints injection generated by Tosska SQL Tuning Expert is around 4 times better than the original SQL and takes 0.639 seconds.

select   *
from  DEPARTMENT
where exists ( select  ‘x’
        from  employee
        where emp_id > 2700000
           and emp_dept = DPT_ID) OPTION(LOOP JOIN,HASH GROUP)

There is an even better SQL with Hints injected, it is around 50 times better than original SQL and takes 0.055 seconds. This query plan is pretty close to the rewrite tuning in my last article.

select   *
from  DEPARTMENT
where exists ( select  ‘x’
        from  employee WITH(INDEX(EMPS_DPT_INX))
        where emp_id > 2700000
           and emp_dept = DPT_ID)

Syntax Rewrite plus Hints Injection Solution
For some SQL statements, a separate syntax rewrite method or a hints injection method may not be able to solve a complex SQL performance problem individually, some people may think that will it be possible if we rewrite a SQL and apply hints at the same time to improve a SQL statement? Yes, it is possible in the Tosska SQL Tuning Expert A.I. engine, this technology can solve more SQL performance problems by a computer algorithm ever before. I will discuss this technology later in my blog.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

The following screen show Tosska SQL Tuning Expert can generate 178 distinguished query plans after investigated 300 SQL Hints injection, it is far out of what a human expert can achieve within 10 minutes. MS SQL Server is the most sensitive to Query Hints Injection database in the market, SQL Server query hints are normally able to influence SQL optimizer to generate a specific query plan, so the SQL tuning for MS SQL Server is far more challenging than other databases.