A Quick Guide to Stored Procedures in Oracle Database and SQL

sql tuning for MySQL

Stored procedures are increasing in popularity in Oracle Database and SQL Server because of quicker execution. Earlier, application code mostly resided in external programs. However, its shift toward database engine interiors compels database professionals to keep their memory requirements in mind.

This is as necessary as planning for times when the code related to database access will be present within the database. They also need to know how they can handle these stored procedures to maintain ideal database performance. We will look at some of these methods and the advantages of using stored procedures and triggers in the Oracle database.

Perks of Stored Procedures for Oracle Database Performance Tuning

Until recently, a majority of Oracle databases had limited code within their stored procedures. This shift in trends is because of the various advantages that come with placing larger amounts of code, such as the following:

Performance Improvement – Using more stored procedures means you don’t require Oracle database performance tuning as much. That’s because each of these only has to load once into the shared pool. Executing them, therefore, is quicker than running external code.

Code Segregation – The stored procedures have all the SQL codes which turn all the application programs into calls for those procedures. This is an improvement in the data retrieval process because changing databases gets simpler.

Therefore, one advantage you get through stored procedures is the ability to transfer large amounts of SQL code to the data dictionary. Doing this will enable you to perform SQL tuning without involving the application layer.

Group Data Easily – You can gather relational tables with data that shares certain behaviour before looking for Oracle performance tuning tips. Simply use Oracle stored procedures as methods, along with suitable naming conventions. For example, link the behaviour of the table data to the table name in the form of prefixes.

The users may then request the data dictionary to display all the traits connected to one table. This makes it more convenient to recognise and reuse code with the help of stored procedures.

Other Reasons Behind the Increasing Popularity of Stored Procedures

There are plenty of other reasons ‌stored procedures and triggers take less time in comparison with conventional code. One of these has something to do with SGA caching in Oracle database and SQL.

Once the shared pool within the SGA gets a hold of a stored procedure, it keeps it there until the procedure gets paged out from the memory. The SGA mostly does this to create space for other stored procedures. The paging out process takes place based on a Least Recently Used or LRU algorithm.

Two parameters help determine the amount of space that Oracle uses on startup. These are the Cache Size and the Shared Pool Size parameters. They also help users check how much storage space is available for various tasks. These include caching SQL code, data blocks, and stored procedures.

Stored procedures will run extremely fast once you load them into the shared pool’s RAM – as long as you can avoid pool thrashing. This is important because several procedures compete for varying quantities of memory in the shared pool. 

How to index SQL with aggregate function SQL for Oracle?

Here the following is an example SQL shows you that select the maximum emp_address which is not indexed in the EMPLOYEE table with 3 million records, the emp_grade is an indexed column.

select max(emp_address) from employee a
where emp_grade<4000

As 80% of the EMPLOYEE table’s records will be retrieved to examine the maximum emp_address string. The query plan of this SQL shows a Table Access Full on EMPLOYEE table is reasonable.

How many ways to build an index to improve this SQL?
Although it is simple SQL, there are still 3 ways to build an index to improve this SQL, the following are the possible indexes that can be built for the SQL, the first one is a single column index and the 2 and 3 are the composite index with a different order.
1. EMP_ADDRESS
2. EMP_GRADE, EMP_ADDRESS
3. EMP_ADDRESS, EMP_GRADE

Most people may use the EMP_ADDRESS as the first choice to improve this SQL, let’s see what the query plan is if we build a virtual index for the EMP_ADDRESS column in the following, you can see the estimated cost is reduced by almost half, but this query plan is finally not being used after the physical index is built for benchmarking due to actual statistics is collected.

The following query shows the EMP_ADDRESS index is not used and the query plan is the same as the original SQL without any new index built.

Let’s try the second composite index (EMP_GRADE, EMP_ADDRESS), the new query plan shows an Index Fast Full Scan of this index, it is a reasonable plan which no table’s data is needed to retrieve. So, the execution time is reduced from 16.83 seconds to 3.89 seconds.

Let’s test the last composite index (EMP_ADDRESS, EMP_GRADE) that EMP_ADDRESS is placed as the first column in the composite index, it creates a new query plan that shows an extra FIRST ROW operation for the INDEX FULL SCAN (MIN/MAX), it highly reduces the execution time from 16.83 seconds to 0.08 seconds.

So, indexing sometimes is an art that needs you to pay more attention to it, some potential solutions may perform excess your expectation.

The best index solution is now more than 200 times better than the original SQL without index, this kind of index recommendation can be achieved by Tosska SQL Tuning Expert for Oracle automatically.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

Why You Must Speed Up Slow Queries in Oracle Database and SQL

oracle database performance tuning

The performance of an Oracle database and SQL query speed can directly affect the organisation it belongs to. If the queries running in the database are slow, they will surely have a negative impact. However, its severity may vary based on the database’s role, its architecture, and the industry your organisation operates in.

Regardless of the extent, it would be unwise to ignore them, which is why we are going to talk about all their effects in this blog.

How Slow Statements Affect Oracle Database and SQL Users

In this fast-paced world, everything needs to work fast and offer a quick response time to its end-users. The data that a web page displays generally comes directly from the database with very few interactions.

This implies the dependency of the application’s response time on the time it takes for the queries to run and the database to respond. Slow statements will take more time, resulting in loading screens before the desired information shows up. This is when Oracle database performance tuning becomes a requirement.

Such speeds don’t affect only the application, however; they leave an impact on the other parts of a system as well. The reason behind this is the location of the database in a majority of web architectures.

Take a look at the three-tier architecture, for example – the database lies at the bottom in most cases, forming the foundation. An increase in latency here is likely to cause the same in the higher levels along with other areas in the system.

Another way in which slow queries negatively impact the system is by making the database use more resources than is actually necessary. Some of these are available in limited quantities, such as I/O and CPU, since other applications share these resources.

On the other hand, not using existing resources sufficiently leads to their inefficient usage and slow queries as well. This may be the case with your database, so you may want to consider a few Oracle performance tuning tips that deal with this particular issue.

Top Reasons Behind Slow and Inefficient Queries

Given below are the three most significant causes of queries slowing down:

  1. Too many tasks: Executing a statement includes multiple tasks, such as retrieving data, making calculations, and arranging data in the order as the query specifies. All of these involve plenty of factors, any of which can increase the amount and complexity of work done, from joining and grouping to filtering and sorting.
  1. Too much waiting: Sometimes, statements don’t have too much to do, nor are they stuck waiting for resources. The reason why they are sluggish is that they are waiting on other statements that are locking resources or requiring higher levels of activity.
  1. Too few resources: Query execution works alongside other tasks taking place within a system. This means they share resources such as network throughput, disk I/O, and CPU. Statement execution is likely to take more time when these are completely occupied.

Locating and Working on Slow Queries in Oracle Database

Slow queries don’t get faster on their own – DBAs must take steps to speed them up. For starters, they can use the Database Performance Monitor (DPM) in the following ways:

  • Viewing all the queries that are taking up execution time using the query profiler. Such queries are often running in the absence of indexes, so it’s a good idea to add one to improve Oracle database performance and execution speed.
  • Automatically collecting explain plans to get a quick glance at the ones that contain information regarding slow queries and the changes related to them, if any. 
  • Assessing Oracle database and SQL to find out whether a statement can perform better with the help of some improvements.
  • Visiting the charts page to go through properly arranged metrics pertaining to system performance. This allows the DBA to set a threshold alert and note changes every time a system resource is reaching maximum use.

Conclusion

Based on your architecture and application, slow statements can affect more aspects of your business than just the database. Therefore, ignoring them is not recommended as it often results in a detrimental impact on both end-users and your organisation.

Consider enlisting the help of professional tuning tools to improve slow query performance in Oracle and SQL Server databases.

How is the order of the columns in a composite index affecting a subquery performance for Oracle?

MySQL database and sql

We know the order of the columns in a composite index will determine the usage of the index or not against a table. A query will use a composite index only if the where clause of the query has at least the leading/left-most columns of the index in it. But, it is far more complicated in correlated subquery situations. Let’s have an example SQL to elaborate the details in the following.

SELECT D.*
FROM   department D
WHERE EXISTS (SELECT    Count(*)
         FROM     employee E
         WHERE     E.emp_id < 1050000
                AND E.emp_dept = D.dpt_id
         GROUP BY  E.emp_dept
         HAVING    Count(*) > 124)

Here the following is the query plan of the SQL, it takes 10 seconds to finish. We can see that the SQL can utilize E.emp_id and E.emp_dept indexes individually.

Let’s see if a new composite index can help to improve the SQL’s performance or not, as a rule of thumb, a higher selectivity column E.emp_id will be set as the first column in a composite index (E.emp_id, E.emp_dept).

The following is the query plan of a new composite index (E.emp_id, E.emp_dept) and the result performance is not good, it takes 11.8 seconds and it is even worse than the original query plan.

If we change the order of the columns in the composite index to (E.emp_dept, E.emp_id), the following query plan is generated and the speed is improved to 0.31 seconds.

The above two query plans are similar, the only difference is the “2” operation. The first composite index with first column E.emp_id uses an INDEX RANGE SCAN of the new composite index, but the second query plan uses an INDEX SKIP SCAN for the first column of E.emp_dept composite index. You can see there is an extra filter operation for E.emp_dept in the Predicate Information of INDEX RANGE SCAN of the index (E.emp_id, E.emp_dept). But the (E.emp_dept, E.emp_id) composite index use INDEX SKIP SCAN without extra operation to filter the E.emp_dept again.

So, you have to test the order of composite index very carefully for correlated subqueries, sometimes it will give you improvements that exceed your expectation.

This kind of index recommendation can be achieved by Tosska SQL Tuning Expert for Oracle automatically.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

How to use ORDERED Hint to Tune a SQL with subquery for Oracle?

Here the following is the description of the ORDERED hint.

The ORDERED hint causes Oracle to join tables in the order in which they appear in the FROM clause.

If you omit the ORDERED hint from a SQL statement performing a join, then the optimizer chooses the order in which to join the tables. You might want to use the ORDERED hint to specify a join order if you know something about the number of rows selected from each table that the optimizer does not. Such information lets you choose an inner and outer table better than the optimizer could.

We usually use an ORDERED hint to control the john order, but how this hint causes a SQL with a subquery. Let’s use the following SQL as an example to see how ORDERED hint works for a subquery.

SELECT *
     FROM DEPARTMENT
where  dpt_id
     in (select emp_dept from employee
      where emp_id >3300000)

Here the following is the query plan of the SQL, it takes 68.84 seconds to finish. The query shows a “TABLE ACCESS FULL” of the DEPARTMENT table and “NESTED LOOPS SEMI” to an “INDEX RANGE SCAN” of EMPLOYEE.

If you think it is not an effective plan, you may want to try to reorder the join path and see if an ORDERED hint is working or not in a subquery case like this:

SELECT  /*+ ORDERED */ *
FROM  department
WHERE  dpt_id IN (SELECT  emp_dept
         FROM  employee
         WHERE  emp_id > 3300000)

Here is the query plan of the hinted SQL and the speed is 3.44 seconds which is 20 times better than the original SQL. The new query plan shows the new join order that EMPLOYEE is retrieve first and then hash join DEPARTMENT later. You can see the ORDERED hint will order the subquery’s table first. This new order clauses a new data retrieval method from the EMPLOYEE table, it makes the overall performance much better than the original query plan.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for Oracle automatically, there are other hints-injection SQL with better performance, but it is not suitable to discuss in this short article, maybe I can discuss later in my blog.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

How to tune a SQL that cannot be tuned ?

oracle sql performance tuning

Some mission-critical SQL statements are already reached their maximum speed within the current indexes configuration.  It means that those SQL statements are not able to be improved by syntax rewrite or Hints injection. Most people may think that the only way to improve this kind of SQL may be by upgrading hardware.  For example, the following SQL statement has every column in WHERE clause is indexed and the best query plan is generated by Oracle already. There is no syntax rewrite or hints injection that can help Oracle to improve the SQL performance.

SELECT EMP_ID,
    EMP_NAME,
    SAL_EFFECT_DATE,
    SAL_SALARY
  FROM EMPLOYEE,
    EMP_SAL_HIST,
    DEPARTMENT,
    GRADE
WHERE EMP_ID = SAL_EMP_ID
  AND SAL_SALARY <200000
  AND EMP_DEPT = DPT_ID
  AND EMP_GRADE = GRD_ID 
  AND GRD_ID<1200    AND EMP_DEPT<‘D’

Here the following is the query plan and execution statistics of the SQL, it takes 2.33 seconds to extract all 502 records. It is not acceptable for a mission-critical SQL that is executed thousands of times in an hour. Do we have another choice if we don’t want to buy extra hardware to improve this SQL?

Introduce new plans for Oracle’s SQL optimizer to consider
Although all columns in the WHERE clause are indexed, can we build some compound indexes to help Oracle’s SQL optimizer to generate new query plans which may perform better than the original plan? Let’s see if we adopt the common practice that the following EMPLOYEE’s columns in red color can be used to compose a concatenated index (EMP_ID, EMP_DEPT, EMP_GRADE).

WHERE  EMP_ID = SAL_EMP_ID
  AND  SAL_SALARY <200000
  AND  EMP_DEPT = DPT_ID
  AND  EMP_GRADE = GRD_ID 
  AND  GRD_ID<1200
  AND  EMP_DEPT<‘D’

CREATE INDEX C##TOSSKA.TOSSKA_09145226686_V0043 ON C##TOSSKA.EMPLOYEE
(
 EMP_ID,
 EMP_DEPT,
 EMP_GRADE
)

The following is the query plan after the concatenated index is created. Unfortunately, the speed of the SQL is 2.40 seconds although a new query plan is introduced by Oracle’s SQL optimizer.

To be honest, it is difficult if we just rely on common practices or human knowledge to build indexes to improve this SQL. Let me imagine that if we got an AI engine that can help me to try the most effective compound indexes to explore Oracle’s SQL optimizer potential solutions for the SQL. The following concatenated indexes are the potential recommendation by the imagined AI engine.

CREATE INDEX C##TOSSKA.TOSSKA_13124445731_V0012 ON C##TOSSKA.EMP_SAL_HIST
(
 SAL_SALARY,
 SAL_EFFECT_DATE,
 SAL_EMP_ID
)
CREATE INDEX C##TOSSKA.TOSSKA_13124445784_V0044 ON C##TOSSKA.EMPLOYEE
(
 EMP_GRADE,
 EMP_DEPT,
 EMP_ID,
 EMP_NAME
)

The following is the query plan after these two concatenated indexes are created and the speed of the SQL is improved to 0.13 seconds. It is almost 18 times better than that of the original SQL without the new indexes.

The above indexes include some columns that appear on the SELECT list of the SQL and there is a correlated indexes relationship for Oracle’s SQL optimizer to generate the query plan, it means that missing any columns of the recommended indexes or reshuffling of the column position of the concatenated indexes may not be able to produce such query plan structure. So, it is difficult for a human expert to compose these two concatenated indexes manually. I am glad to tell you that this kind of AI engine is actually available in the following product.

https://www.tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

How to Tune SQL Statement with OR conditions in a Subquery for SQL Server?

sql performance monitoring

The following is an example that shows a SQL statement with an EXISTS subquery. The SQL counts the records from the EMPLOYEE table if the OR conditions are satisfied in the subquery of the DEPARTMENT table.

select countn(*) from employee a where
exists (select ‘x’ from department b
    where a.emp_id=b.dpt_manager or a.emp_salary=b.dpt_avg_salary
     )

Here the following is the query plan in the Tosska proprietary tree format, it takes 4 minutes and 29 seconds to finish.

The query plan shows a Nested Loops from EMPLOYEE to full table scan DEPARTMENT, it is the main problem of the entire query plan, the reason is the SQL Server cannot resolve this OR conditions  ”a.emp_id=b.dpt_manager or a.emp_salary=b.dpt_avg_salary” by other join operations.

Let me rewrite the OR conditions in the subquery into a UNION ALL subquery in the following, the first part of the UNION ALL in the subquery represents the “a.emp_id=b.dpt_manager” condition, the second part represents the “a.emp_salary=b.dpt_avg_salary” condition but exclude the data that already satisfied with the first condition.

select  count(*)
from   employee a
where  exists ( select  ‘x’
        from   department b
        where  a.emp_id = b.dpt_manager
        union all
        select  ‘x’
        from   department b
        where  ( not ( a.emp_id = b.dpt_manager )
            or b.dpt_manager is null )
            and a.emp_salary = b.dpt_avg_salary )

Here the following is the query plan of the rewritten SQL, it looks a little bit complex, but the performance is very good now, it takes only 0.447 seconds. There are two Hash Match joins that are used to replace the original Nested Loops from EMPLOYEE to full table scan DEPARTMENT.

Although the steps to the final rewrite is a little bit complicated, this kind of rewrites can be achieved by Tosska SQL Tuning Expert for SQL Server automatically, it shows that the rewrite is more than 600 times fastAlthough the steps to the final rewrite is a little bit complicated, this kind of rewrites can be achieved by Tosska SQL Tuning Expert for SQL Server automatically, it shows that the rewrite is more than 600 times faster than the original SQL.

Tosska SQL Tuning Expert (TSES™) for SQL Server® – Tosska Technologies Limited

How to Tune SQL Statements to Run SLOWER… but Make Users Feel BETTER (Oracle)?

MySQL database and SQL

Your end-users may keep on complaining about some functions of their database application are running slow, but you may found that those SQL statements are already reached their maximum speed in the current Oracle and hardware configuration. There may be no way to improve the SQL unless you are willing to upgrade your hardware. To make your users feel better, sometimes, you don’t have to tune your SQL to run faster but to tune your SQL to run slower for certain application’s SQL statements.

This is an example SQL that is used to display the information from tables Emp_sal_hist and Employee if they are satisfied with certain criteria. This SQL is executed as an online query and users have to wait for at least 5 seconds before any data will be shown on screen after the mouse click.

select * from employee a,emp_sal_hist c
where a.emp_name like ‘A%’
     and a.emp_id=c.sal_emp_id
     and c.sal_salary<1800000
order by c.sal_emp_id

Here the following is the query plan and execution statistics of the SQL, it takes 10.41 seconds to extract all 79374 records and the first records return time ”Response Time” is 5.72 seconds. The query shows a MERGE JOIN of EMPLOYEE and EMP_SAL_HIST table, there are two sorting operations of the corresponding tables before it is being merged into the final result. It is the reason that users have to wait at least 5 seconds before they can see anything shows on the screen.

As the condition “a.emp_id = c.sal_emp_id”, we know that “ORDER BY c.sal_emp_id“ is the same as “ORDER BY a.emp_id“,  as SQL syntax rewrite cannot force a specified operation in the query plan for this SQL, I added an optimizer hint /*+ INDEX(@SEL$1 A EMPLOYEE_PK) */ to reduce the sorting time of order by a.emp_id.

SELECT  /*+ INDEX(@SEL$1 A EMPLOYEE_PK) */ *
FROM    employee a,
      emp_sal_hist c
WHERE a.emp_name LIKE ‘A%’
    AND a.emp_id=c.sal_emp_id
    AND c.sal_salary<1800000
ORDER BY c.sal_emp_id

Although the overall Elapsed Time is 3 seconds higher in the new query plan, the response time is now reduced from 5.72 seconds to 1.16 seconds, so the users can see the first page of information on the screen more promptly and I believe most users don’t care whether there are 3 more seconds for all 79374 records to be returned. That is why SQL tuning is an art rather than science when you are going to manage your users’ expectations.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for Oracle automatically.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

How to Tune SQL Statement with “< ANY (subquery)” Operator for Oracle?

database query optimization

Here the following is a simple SQL statement with a “< ANY (Subquery)” syntax.

SELECT  *
FROM    employee
WHERE  emp_salary< ANY (SELECT emp_salary
              FROM  emp_subsidiary
              where  emp_dept=‘AAA’
              )

Here the following is the query plan of the SQL, it takes 18.49 seconds to finish. The query shows a “TABLE ACCESS FULL” of EMPLOYEE table and “MERGE JOIN SEMI” to a VIEW that is composed of a HASH JOIN of two indexes “INDEX RANGE SCAN” of EMP_SUBSIDIARY.

You can see that it is not an efficient query plan if we know that the emp_salary of EMP_SUBSIDIARY is a not null column, we can rewrite the SQL into the following syntax. The Nvl(Max(emp_salary),-99E124)is going to handle the case that if the subquery returns no record, the -99E124 representing the minimum number that the emp_salary can store to force an unconditional true for the subquery comparison.

SELECT  *
FROM    employee
WHERE  emp_salary < (SELECT  Nvl(Max(emp_salary),-99E124)
            FROM   emp_subsidiary
            WHERE  emp_dept = ‘AAA’)

Here is the query plan of the rewritten SQL and the speed is 0.01 seconds which is 1800 times better than the original syntax. The new query plan shows an “INDEX RANGE SCAN” instead of “TABLE ACCESS FULL” of EMPLOYEE.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for Oracle automatically, there are other rewrites with similar performance, but it is not suitable to discuss in this short article, maybe I can discuss later in my blog.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/

How to Tune SQL Statement with DECODE Expression for Oracle?

sql tuning for MySQL

Here the following is an example SQL statement with a DECODE expression syntax.

select  *  from employee
where  decode(emp_dept , ‘AAA’ , ‘ADM’ , ‘AAB’ , ‘ACC’ , emp_dept) = ‘ADM’

Here the following are the query plans of this SQL, it takes 6.41 seconds to finish. The query shows a Full Table Scan of EMPLOYEE table due to the DECODE expression cannot utilize the EMP_DEPT column’s index.

We can rewrite the DECODE expression into the following semantical equivalent SQL statement with multiple OR conditions.

SELECT   *
FROM      employee
WHERE  emp_dept = ‘AAA’
         AND ‘ADM’ = ‘ADM’
         OR  NOT ( emp_dept = ‘AAA’ )
              AND emp_dept = ‘AAB’
              AND ‘ACC’ = ‘ADM’
         OR  NOT ( emp_dept = ‘AAA’
                       OR emp_dept = ‘AAB’ )
              AND emp_dept = ‘ADM’

Here is the query plan of the rewritten SQL and the speed is 0.41 seconds. It is 15 times better than the original syntax. The new query plan shows a BITMAP OR of two INDEX RANGE SCAN of EMP_DEPT index.

This kind of rewrite can be achieved by Tosska SQL Tuning Expert for Oracle automatically, there are other rewrites with even better performance, but it is not suitable to discuss in the short article, maybe I can discuss later in my blog.

https://tosska.com/tosska-sql-tuning-expert-pro-tse-pro-for-oracle/