News


oracle database performance tuning

That’s not bad enough that you call it SQL whereas your boss pronounces it ‘sequel’. But also, you now suffer from “Super Slow Query Syndrome,” and sometimes, your questions bomb without effect.

Don’t worry. We have your back. We recently had a powwow with a lot of caffeine to think about our favorite tips to fix queries. With the help of this article, we will dig into how we can resolve SQL queries and improve the performance of SQL queries with new tips and tricks, such as action plans, references, wild cards, and much more.

In fact, we have combined all our famous skills into one, so you can increase your SQL intelligence by six minutes flat.

The issues faced by the companies in SQL Server performance often lead to focusing on using tuning tools and development strategies. This will help to analyze and process queries faster and eliminate operational issues, troubleshoot poor performance, avoid any chaos, or reduce the impact on the SQL Server database.

What is SQL Query Optimization?

Optimizing SQL Query is the process of writing considerate SQL queries to improve database performance. During development, the amount of data accessed and tested is not much. Thus, it becomes easy for developers to get a prompt response to their raised questions. But the problem starts when the project becomes live and large data starts to flood the database. These kinds of situations reduce the resolving process and performance.

A request for data or information from a database is called a Query, and you need to write a pre-defined set of code that is understandable to the database. Structured Query Language (SQL) and other query languages recover or manage data from related databases.

There are different formats to write a query in the database, using various algorithms. A query that is incomplete or written poorly can lead to a lot of resource consumption, and also can take a lot of time in execution, which possibly causes a loss in services. A proper query can reduce implementation time and lead to better SQL results.

SQL query optimization’s main purpose is to reduce response time and improve query performance, Reduce CPU performance time for faster results and reduce the number of resources used to improve the output.

Ways to Improve SQL Query Performance

Avoiding unnecessary columns in the SELECT section

To improve MySQL functionality, it’s recommended to specify columns in the SELECT section, instead of using SELECT*. As irrelevant columns create more load in the database, it slows down the performance of the whole system.

Using internal joining, rather than external joining if possible

Use external joining only if necessary. Excessive use of it not only limits database performance but also limits MySQL query options, resulting in slower SQL statements.

Using DISTINCT and UNION only if necessary

By using UNION and DISTINCT operators while there are no major objective results in unwanted filtering and reduced SQL performance. To improve the performance and bring efficiency to the process we can always use UNION ALL, rather than UNION.

Using the ORDER BY clause

To get more clear results it is important to use the ORDER BY clause. It not only brings 

advantages for database admins but also increases performance in its execution.

SQL Query Performance Tuning: Best Practice

SQL Query tuning is one of the fastest ways to improve the performance of SQL Server. Set procedures and processes are used to improve the performance and resolve the database-related queries this is called Tuning the SQL server. SQL tuning includes several features, including identifying which queries are slower and utilizing them to work more efficiently. Multiple communication databases like MySQL and SQL Server will benefit from SQL tuning.

The Database Performance Analyzer can attempt to troubleshoot server performance issues in the system. But these measures are expensive, and they may not work to solve the problem of slow-moving queries. Tuning SQL functionality helps you to identify poorly written SQL queries and invalid indexing conditions. After doing so, you may find that you do not need to invest in hardware upgrades or technical details.

Tuning SQL functionality can be difficult, especially if done manually. Believe it or not, the slight changes can have major effects on SQL Server and database performance. Hence, there is a need for practical SQL Query performance tools.

To conclude, generally, the best practices of SQL Query performance Tuning include proper indexing that can be done by the Execution Plan tool in SQL Server. Additionally, avoiding coding loops and correlating SQL subqueries.

Tosska SQL Tuning Expert (TSE™) v4 is one of the best SQL tuning tool available in the market. It helps in tuning the SQL even without any source code.

sql server performance tuning

Click to view Tosska SQL Tuning Expert (TSE™) 4.5.1 Release Notes

download free sql server

Click to view Tosska SQL Tuning Expert Pro (TSE Pro™) 4.5.1 Release Notes

Click to view Tosska SQL Tuning Expert Pro (TSES Pro™) for SQL Server 2.1.1 Release Notes

Click to view Tosska SQL Tuning Expert (TSES™) for SQL Server 1.5.1 Release Notes

download free sql server

Click to view Tosska SQL Tuning Expert Pro (TSE Pro™) 4.5.0 Release Notes

sql server performance tuning

Click to view Tosska SQL Tuning Expert (TSE™) 4.5.0 Release Notes

Click to view Tosska SQL Tuning Expert Pro (TSES Pro™) for SQL Server 2.1.0 Release Notes

improve MySQL database performance

Oftentimes, database professionals make the mistake of jumping to conclusions when trying to improve MySQL database performance. They assume that the database must be the reason why the application has slowed down. 

In most cases, they may be right- which is why it’s important to start looking for possible bottlenecks and removing them to reduce lag. However, make sure you consider multiple forms of diagnostic data when attempting to uncover the root cause behind poor MySQL database performance. Don’t stick to just monitoring CPU usage or disk IO as relying on a single metric has greater chances of leading you to an incorrect diagnosis.

We need to look at the full picture to understand the complex interdependencies among CPU, memory, and IO. It is important to do so before making reactive changes, such as increasing disk capacity or memory. In this blog, we will take a look at one such reason behind performance bottlenecks- large data volumes.

How Large Data Volumes Affect MySQL Database Performance

Statements that cover a wide scope of data or are unrefined may fetch unreasonably large quantities of information from the database. This doesn’t seem like a problem at first when the database is new and has minimal data.

The true issue emerges as it grows in size, gradually leading to the requirement of Database Server. This is because when a statement fetches data, the data must be scanned into memory. The bigger the size of the data that needs scanning, the greater the load on the CPU, resulting in the need for burst mode due to sudden CPU spikes. This kind of usage increases the chances of your database server crashing.

Additionally, in case the data does make it from the database server, your app server may not be sufficiently provisioned to handle it. Known as over-fetching, you can overcome this problem by limiting the scope of data selection to relevant records. One way to do that is to opt for the WHERE clause in such queries- after you find them, of course.

The key to locating them is by searching through the database logs and metrics for tell-tale signs of large-scale data fetching. Although you might be able to spot CPU spikes or burst credit utilization from these metrics, it might not be easy to tell which statements are causing this specifically.

Things You Can Do to Improve MySQL Database Performance

Query optimization is one of the best places to begin when you have to improve MySQL database performance. But it differs from case to case and is far from a one-size-fits-all endeavor. That said, there are certain tasks that help in a lot of cases:

  • As mentioned above, you can prevent large result sets and decrease data volume by limiting the search to relevant records using the WHERE clause.
  • Go through the database schema to uncover ways that decrease complexity. For instance, keep an eye out on queries that contain a lot of joins since they take more time than most queries. You can make them run faster by reducing their relationships.
  • A large number of queries also fetch unnecessary fields from tables. You can set them to return only those fields that are important to keep from over-fetching again.
  • Views can help in some, but not all cases. A view is similar to a table that you can create beforehand by executing a statement to predetermine values that may require on-the-spot calculation otherwise.
  • Change the syntax of the SQL to influence database SQL optimizer to generate a better query plan.

Conclusion

If your application is performing poorly, the problem often lies with the database, with inefficient queries. While there isn’t any solution that works for every single query out there, database experts can hone in on the ones that require optimization using diligent analysis and monitoring, along with the right SQL optimizer tool for sql server.

After they successfully find the queries behind slow database performance, all they have to do is take the right steps to resolve this issue. These include optimization techniques, such as adding indexes, editing out unnecessary fields, and inserting the WHERE clause wherever necessary.

Query Performance Tuning

DBAs can’t ignore disk operations when working on query performance tuning. When talking about databases, ‘disk’ may be called by one of its many names, such as ‘storage’, ‘I\O’, ‘Reads’, or disk operations.

Although database professionals know all these terms mean the same thing, these might confuse those outside this field. When referring to one of these terms, they usually mean the number of disk operations required to fetch the data from the Disk resource.

Why You Can’t Ignore Disk Operations During Query Performance Tuning

The fact remains, however, that an overwhelming majority of SQL Server databases face the bottleneck issue when it comes to the disk resource. This doesn’t change, regardless of whether you have old-school hard drives or the latest flash storage arrays. Given below are some major reasons behind this, and how these can be affected with MySQL query optimization:

  1. Most slow queries are slow because they have to scan a large amount of data. A lot of the time, this is unnecessary and it’s making your SQL Server perform a lot of unneeded and really sluggish read operations.
  2. When the database reads data, it requires a place to store that information- which it does in the RAM. However, since the RAM has a limited capacity, older information starts getting removed with newer data coming in.
  3. Because RAM is never enough, it is often unable to store all the data that SQL Server fetches. Therefore, the remaining data has to be kept on the disk, which is far slower than the RAM. The information that isn’t present in the RAM has to be fetched from the disk- an operation that is known as the slowest in all of the database operations. Some DBAs even compare data fetching from the RAM and the disk to sprinting and tip-toeing.
  4. So, if we tune a query to read less data than it did before, such as twenty rows instead of twenty thousand, it will help in two ways. Not only will it reduce the workload on the database in terms of disk operations, but it will also require far fewer resources, including CPU and RAM, to process all the data. That said, the end-user is unaware of all these operations- all they know and appreciate is the speed or the time it takes for the query to fetch information. To put it simply, they just want the screen on the app to return as quickly as possible. This is why query performance tuning focuses on decreasing disk reads.
  5. DBAs also perform tuning to lower the other resources, such as CPU or RAM usage. But they only do this in certain special situations where such resources are consistently being overused at dangerous levels. For instance, if the CPU is in constant use of 90% or above, then the DBA will consider CPU tuning.
  6. Tuning queries that fetch large volumes of data to fetch much smaller volumes instead improves SQL Server capacity. This is because when a query takes up fewer resources, it leaves room for more users and queries. This allows the same server to take greater loads than it could. Performing MySQL query optimization also improves the lifespan of the same server, delaying the requirement for a hardware upgrade.

Summing Up

The above-mentioned reasons shed light on the fact that disk operations play a major role in enabling efficient database query performance. You can’t always blame the CPU; in fact, you can rarely do so since 95% of bottlenecks occur on the disk resource.

The CPU, on the other hand, is only a lagging indicator whose use can decrease if the storage reads differ.