Improve SQL Queries & Database for Better Efficiency: Part 2

This is the second blog in our two-part series to explain the best ways to optimize your database, which is best done by enhancing the SQL queries being used. Without much ado, let’s pick up where we left off –

Give Preference to WHERE, instead of HAVING (when defining filters)

A query is efficient when it saves resources by fetching only what’s needed from the database. According to the Order of Operations defined in SQL, WHERE queries are calculated before HAVING statements.

Therefore, it is advisable to give preference to WHERE over HAVING when the goal is to filter a query on the basis of conditions for greater efficiency. 

For instance, let us suppose a hundred sales have been made during the year 2019, and a user wishes to put in a query to determine what the number of sales was for the same time period. They may write something like this:

SELECT Clients.ClientID, Clients.Name, Count(Sales.SalesID)

FROM Clients

   INNER JOIN Sales

   ON Clients.ClientID = Sales.ClientID

GROUP BY Clients.ClientID, Clients.Name

HAVING Sales.LastSaleDate BETWEEN #1/1/2019# AND #12/31/2019#

This statement would return at least a thousand sales records from the Sales table, then filter these thousand records to find the hundred records generated in the year 2019, and lastly, tally the data in the dataset.

If we compare the above with the same instance using the WHERE clause instead, there is a limit placed on the number of records fetched:

SELECT Clients.ClientID, Clients.Name, Count(Sales.SalesID)

FROM Clients

  INNER JOIN Sales

  ON Clients.ClientID = Sales.CustomerID

WHERE Sales.LastSaleDate BETWEEN #1/1/2019# AND #12/31/2019#

GROUP BY Clients.ClientID, Clients.Name

This statement would return the hundred records from the year 2019, after which it would count the records in the dataset, thereby getting rid of the first step in the HAVING clause.

Keep wildcards strictly at the end of a statement

A wildcard creates the largest search possible when looking for plaintext information like names or designations. However, the wider a search, the less efficient it is, and a leading wildcard worsen the performance – particularly when it’s used with an ending wildcard.

That’s because the database has to find every single record that remotely matches the selected field. Take this query to fetch cities beginning with ‘Ch’, for instance:

SELECT Cities FROM Clients

WHERE Cities LIKE ‘%Ch%’

This statement will not just fetch the expected results of Chicago, Chester, and Chelsea, but will also return unintended results, like Richardson, Canal Winchester, and Cannon Beach.

A more productive statement would be:

SELECT Cities FROM Clients

WHERE Cities LIKE ‘Ch%’

This query will lead only to the expected results of Chicago, Chester, and Chelsea.

Use LIMIT to sample query results

The use of a LIMIT query will make sure the results of new SQL queries are relevant and desirable. As the name suggests, its function is to limit the quantity of records to the number mentioned, saving a lot of resources in the process.

Considering the 2019 sales query from above, let us suppose a limit of 15 records:

SELECT Clients.ClientID, Clients.Name, Count(Sales.SalesID)

FROM Clients

  INNER JOIN Sales

  ON Clients.ClientID = Sales.ClientID

WHERE Sales.LastSaleDate BETWEEN #1/1/2019# AND #12/31/2019#

GROUP BY Clients.ClientID, Clients.Name

LIMIT 15

The results will indicate if the data set is worth using or not.

Adjust Your Timing a Bit

If you’re looking to minimize the impact of your analytical queries on the production database, consult with an Oracle Database Administrator regarding the scheduling of your SQL queries so that they can be run during off-peak hours.

Specific hours when there are fewest concurrent users, generally in the middle of the night, should be chosen to run such resource consuming queries. If your SQL queries are more likely to include the following criteria, consider running it during off-peak timings:

  • Selecting from huge tables (where there are over a million records)
  • Queries with Cartesian or Cross Joins
  • Looping queries
  • SELECT DISTINCT queries
  • Subqueries that are nested
  • Search queries involving wildcards in long text or memo areas
  • Numerous schema statements

Query with Confidence!

Keeping these and other SQL tips into consideration will certainly enable you to construct efficient, smart queries that will operate swiftly and fetch your team the game-changing insights it needs.

What Optimization in SQL is, and Why It’s Necessary for DBAs

SQL statements or queries are designed to retrieve information from the database. A user can achieve the same results through optimization in SQL; using a tuned query is especially useful from an execution perspective. 

Tuning a database is a vital step in organizing and accessing the information in a database. Performance tuning in SQL requires streamlining and homogenizing the environment of a database and the files in it. This simplifies the way users access data in a big way. 

Why Companies Need to Consider Optimization in SQL

Several organizations own databases, but not all of them hire IT staff knowledgeable in the ways of optimization in SQL. Only professionals who have tuning skills and experience along with insider information about the working of databases should do this. 

In case your company has a database but it hasn’t undergone performance tuning, you might encounter inadequate responses to queries and face unnecessary complications when handling data. Don’t let your efficiency get affected because of something avoidable like this! 

Performance Tuning in SQL: What It Involves

Tasks related to performance tuning include optimization in SQL database, creating and managing indexes, and other related tasks to maintain or improve database performance. The goal of MySQL query optimization is to increase the speed and brevity of query responses and to simplify data retrieval. 

Let’s look at three major reasons why companies need to take performance tuning and seriously – 

1. To enhance the rate of data fetching options

If your database lacks optimization, then fetching data can get slower with increasing data loads. Optimizing queries enables users to create indexes and eradicate issues that may be slowing down data retrieval. After all, it can get quite frustrating for your employees to wait for the database to perform its operations, which can pass on to customers forced to wait for the same.

2. To refrain from coding loops

Making your database go through a coding loop is akin to hammering it repeatedly. That’s because the same query is executed several times when it is placed in a loop. However, once you remove the query from the loop, you will experience a definite surge in performance because the query is run only once rather than going through multiple iterations. 

3. To increase the performance of your SQL statements 

Query tuning in SQL includes changing previous query patterns and habits that were affecting the speed of data storage and retrieval. For example, the use of SELECT is reduced by opting for separate column declaration and eliminating correlated subqueries. Queries are also simplified by obviating temporary tables at times, aside from many other techniques of optimization in SQL

Your database will be able to manage much more data after the application of all these improvements as these will increase its efficiency, making it scalable as well. Once your database has scalability, it also overcomes lower performance and ensures user satisfaction in terms of experience. 
If you require professional tools to manage MySQL query optimization and tuning, then Tosska can help you. Tosska provides highly intuitive tools that can simplify query tuning beyond your imagination, and it does this with the help of innovative AI technologies. Contact us today to learn more about our range of query optimization products and services.